Scrolling Glitter Text GeneratorScrolling Glitter Text GeneratorScrolling Glitter Text GeneratorScrolling Glitter Text GeneratorScrolling Glitter Text GeneratorScrolling Glitter Text GeneratorScrolling Glitter Text GeneratorScrolling Glitter Text Generator

Selasa, 04 Januari 2011

ORGANISME TRANSGENIK

Pemanfaatan Organisme Transgenik dan Produk yang Dihasilkannya

Teknologi DNA rekombinan atau rekayasa genetika telah melahirkan revolusi baru dalam berbagai bidang kehidupan manusia, yang dikenal sebagai revolusi gen. Produk teknologi tersebut berupa organisme transgenik atau organisme hasil modifikasi genetik (OHMG), yang dalam bahasa Inggris disebut dengan genetically modified organism (GMO). Namun, sering kali pula aplikasi teknologi DNA rekombinan bukan berupa pemanfaatan langsung organisme transgeniknya, melainkan produk yang dihasilkan oleh organisme transgenik. Dewasa ini cukup banyak organisme transgenik atau pun produknya yang dikenal oleh kalangan masyarakat luas. Beberapa di antaranya bahkan telah digunakan untuk memenuhi kebutuhan hidup sehari-hari. Berikut ini akan dikemukakan beberapa contoh pemanfaatan organisme transgenik dan produk yang dihasilkannya dalam berbagai bidang kehidupan manusia.

1. Pertanian

Aplikasi teknologi DNA rekombinan di bidang pertanian berkembang pesat dengan dimungkinkannya transfer gen asing ke dalam tanaman dengan bantuan bakteri Agrobacterium tumefaciens (lihat Bab XI). Melalui cara ini telah berhasil diperoleh sejumlah tanaman transgenik seperti tomat dan tembakau dengan sifat-sifat yang diinginkan, misalnya perlambatan kematangan buah dan resistensi terhadap hama dan penyakit tertentu.

Pada tahun 1996 luas areal untuk tanaman transgenik di seluruh dunia telah mencapai 1,7 ha, dan tiga tahun kemudian meningkat menjadi hampir 40 juta ha. Negara- negara yang melakukan penanaman tersebut antara lain Amerika Serikat (28,7 juta ha), Argentina (6,7 juta ha), Kanada (4 juta ha), Cina (0,3 juta ha), Australia (0,1 juta ha), dan Afrika Selatan (0,1 juta ha). Indonesia sendiri pada tahun 1999 telah mengimpor produk pertanian tanaman pangan transgenik berupa kedelai sebanyak 1,09 juta ton, bungkil kedelai 780.000 ton, dan jagung 687.000 ton. Pengembangan tanaman transgenik di Indonesia meliputi jagung (Jawa Tengah), kapas (Jawa Tengah dan Sulawesi Selatan), kedelai, kentang, dan padi (Jawa Tengah). Sementara itu, tanaman transgenik lainnya yang masih dalam tahap penelitian di Indonesia adalah kacang tanah, kakao, tebu, tembakau, dan ubi jalar.

Di bidang peternakan hampir seluruh faktor produksi telah tersentuh oleh teknologi DNA rekombinan, misalnya penurunan morbiditas penyakit ternak serta perbaikan kualitas pakan dan bibit. Vaksin-vaksin untuk penyakit mulut dan kuku pada sapi, rabies pada anjing, blue tongue pada domba, white-diarrhea pada babi, dan fish-fibrosis pada ikan telah diproduksi menggunakan teknologi DNA rekombinan. Di samping itu, juga telah dihasilkan hormon pertumbuhan untuk sapi (recombinant bovine somatotropine atau rBST), babi (recombinant porcine somatotropine atau rPST), dan ayam (chicken growth hormone). Penemuan ternak transgenik yang paling menggegerkan dunia adalah ketika keberhasilan kloning domba Dolly diumumkan pada tanggal 23 Februari 1997.

Pada dasarnya rekayasa genetika di bidang pertanian bertujuan untuk menciptakan ketahanan pangan suatu negara dengan cara meningkatkan produksi, kualitas, dan upaya penanganan pascapanen serta prosesing hasil pertanian. Peningkatkan produksi pangan melalui revolusi gen ini ternyata memperlihatkan hasil yang jauh melampaui produksi pangan yang dicapai dalam era revolusi hijau. Di samping itu, kualitas gizi serta daya simpan produk pertanian juga dapat ditingkatkan sehingga secara ekonomi memberikan keuntungan yang cukup nyata. Adapun dampak positif yang sebenarnya diharapkan akan menyertai penemuan produk pangan hasil rekayasa genetika adalah terciptanya keanekaragaman hayati yang lebih tinggi.

2. Perkebunan, kehutanan, dan florikultur

Perkebunan kelapa sawit transgenik dengan minyak sawit yang kadar karotennya lebih tinggi saat ini mulai dirintis pengembangannya. Begitu pula, telah dikembangkan perkebunan karet transgenik dengan kadar protein lateks yang lebih tinggi dan perkebunan kapas transgenik yang mampu menghasilkan serat kapas berwarna yang lebih kuat.

Di bidang kehutanan telah dikembangkan tanaman jati transgenik, yang memiliki struktur kayu lebih baik. Sementara itu, di bidang florikultur antara lain telah diperoleh tanaman anggrek transgenik dengan masa kesegaran bunga yang lama. Demikian pula, telah dapat dihasilkan beberapa jenis tanaman bunga transgenik lainnya dengan warna bunga yang diinginkan dan masa kesegaran bunga yang lebih panjang.

Sentuhan teknologi DNA rekombinan pada florikultur antara lain dilakukan dengan mengisolasi dan memanipulasi gen biru dan gen etilen biru sesuai dengan tujuan yang dikehendaki. Di Amerika Serikat dan Eropa bibit violet carnation akan diproduksi melalui teknik rekayasa genetika. Bibit violet carnation transgenik ini disebut dengan moonshadow. Bunga moonshadow memiliki sangat sedikit benang sari, dan bahkan sesudah dipotong bunga tidak mempunyai benang sari lagi sehingga kemungkinan perpindahan gen ke tanaman lain dapat dicegah.

3. Kesehatan

Di bidang kesehatan, rekayasa genetika terbukti mampu menghasilkan berbagai jenis obat dengan kualitas yang lebih baik sehingga memberikan harapan dalam upaya penyembuhan sejumlah penyakit di masa mendatang. Bahan-bahan untuk mendiagnosis berbagai macam penyakit dengan lebih akurat juga telah dapat dihasilkan.

Teknik rekayasa genetika memungkinkan diperolehnya berbagai produk industri farmasi penting seperti insulin, interferon, dan beberapa hormon pertumbuhan dengan cara yang lebih efisien. Hal ini karena gen yang bertanggung jawab atas sintesis produk-produk tersebut diklon ke dalam sel inang bakteri tertentu yang sangat cepat pertumbuhannya dan hanya memerlukan cara kultivasi biasa.

Berbagai macam vaksin juga telah diproduksi menggunakan teknik rekayasa genetika, misalnya vaksin herpes, vaksin hepatitis B, vaksin lepra, vaksin malaria, dan vaksin kolera. Kecuali vaksin kolera, vaksin-vaksin tersebut dapat diproduksi dengan lebih efisien dan dalam jumlah yang lebih besar daripada produksi secara konvensional. Penggunaan vaksin malaria sangat diperlukan karena banyak nyamuk malaria yang saat ini sudah resisten terhadap DDT.

Contoh lain kontribusi potensial rekayasa genetika di bidang kesehatan yang hingga kini masih menjadi tantangan besar bagi para peneliti dari kalangan kedokteran dan ahli biologi molekuler adalah upaya terapi gen untuk mengatasi penyakit-penyakit seperti kanker dan sindrom hilangnya kekebalan bawaan atau acquired immunodeficiency syndrome (AIDS). Begitu juga, berkembangnya resistensi bakteri patogen terhadap antibiotik masih membuka peluang penelitian rekayasa genetika di bidang kesehatan.

4. Lingkungan

Rekayasa genetika ternyata sangat berpotensi untuk diaplikasikan dalam upaya penyelamatan keanekaragaman hayati, bahkan dalam bioremidiasi lingkungan yang sudah terlanjur rusak. Dewasa ini berbagai strain bakteri yang dapat digunakan untuk membersihkan lingkungan dari bermacam-macam faktor pencemaran telah ditemukan dan diproduksi dalam skala industri. Sebagai contoh, sejumlah pantai di salah satu negara industri dilaporkan telah tercemari oleh metilmerkuri yang bersifat racun keras baik bagi hewan maupun manusia meskipun dalam konsentrasi yang kecil sekali. Detoksifikasi logam air raksa (merkuri) organik ini dilakukan menggunakan tanaman Arabidopsis thaliana transgenik yang membawa gen bakteri tertentu yang dapat menghasilkan produk untuk mendetoksifikasi air raksa organik.

5. Industri

Pada industri pengolahan pangan, misalnya pada pembuatan keju, enzim renet yang digunakan juga merupakan produk organisme transgenik. Hampir 40% keju keras (hard cheese) yang diproduksi di Amerika Serikat menggunakan enzim yang berasal dari organisme transgenik. Demikian pula, bahan-bahan food additive seperti penambah cita rasa makanan, pengawet makanan, pewarna pangan, pengental pangan, dan sebagainya saat ini banyak menggunakan produk organisme transgenik.

Permasalahan dalam Pemanfaatan Produk Teknologi DNA Rekombinan

Meskipun terlihat begitu besar memberikan manfaat dalam berbagai bidang kehidupan manusia, produk teknologi DNA rekombinan (organisme transgenik beserta produk yang dihasilkannya) telah memicu sejumlah perdebatan yang menarik sekaligus kontroversial apabila ditinjau dari berbagai sudut pandang. Kontroversi pemanfaatan produk rekayasa genetika antara lain dapat dilihat dari aspek sosial, ekonomi, kesehatan, dan lingkungan.

Aspek sosial

1. Aspek agama

Penggunaan gen yang berasal dari babi untuk memproduksi bahan makanan dengan sendirinya akan menimbulkan kekhawatiran di kalangan pemeluk agama Islam. Demikian pula, penggunaan gen dari hewan dalam rangka meningkatkan produksi bahan makanan akan menimbulkan kekhawatiran bagi kaum vegetarian, yang mempunyai keyakinan tidak boleh mengonsumsi produk hewani. Sementara itu, kloning manusia, baik parsial (hanya organ-organ tertentu) maupun seutuhnya, apabila telah berhasil menjadi kenyataan akan mengundang kontroversi, baik dari segi agama maupun nilai-nilai moral kemanusiaan universal. Demikian juga, xenotransplantasi (transplantasi organ hewan ke tubuh manusia) serta kloning stem cell dari embrio manusia untuk kepentingan medis juga dapat dinilai sebagai bentuk pelanggaran terhadap norma agama.

2. Aspek etika dan estetika

Penggunaan bakteri E coli sebagai sel inang bagi gen tertentu yang akan diekspresikan produknya dalam skala industri, misalnya industri pangan, akan terasa menjijikkan bagi sebagian masyarakat yang hendak mengonsumsi pangan tersebut. Hal ini karena E coli merupakan bakteri yang secara alami menghuni kolon manusia sehingga pada umumnya diisolasi dari tinja manusia.

Aspek ekonomi

Berbagai komoditas pertanian hasil rekayasa genetika telah memberikan ancaman persaingan serius terhadap komoditas serupa yang dihasilkan secara konvensional. Penggunaan tebu transgenik mampu menghasilkan gula dengan derajad kemanisan jauh lebih tinggi daripada gula dari tebu atau bit biasa. Hal ini jelas menimbulkan kekhawatiran bagi masa depan pabrik-pabrik gula yang menggunakan bahan alami. Begitu juga, produksi minyak goreng canola dari tanaman rapeseeds transgenik dapat berpuluh kali lipat bila dibandingkan dengan produksi dari kelapa atau kelapa sawit sehingga mengancam eksistensi industri minyak goreng konvensional. Di bidang peternakan, enzim yang dihasilkan oleh organisme transgenik dapat memberikan kandungan protein hewani yang lebih tinggi pada pakan ternak sehingga mengancam keberadaan pabrik-pabrik tepung ikan, tepung daging, dan tepung tulang.

Aspek kesehatan

1. Potensi toksisitas bahan pangan

Dengan terjadinya transfer genetik di dalam tubuh organisme transgenik akan muncul bahan kimia baru yang berpotensi menimbulkan pengaruh toksisitas pada bahan pangan. Sebagai contoh, transfer gen tertentu dari ikan ke dalam tomat, yang tidak pernah berlangsung secara alami, berpotensi menimbulkan risiko toksisitas yang membahayakan kesehatan. Rekayasa genetika bahan pangan dikhawatirkan dapat mengintroduksi alergen atau toksin baru yang semula tidak pernah dijumpai pada bahan pangan konvensional. Di antara kedelai transgenik, misalnya, pernah dilaporkan adanya kasus reaksi alergi yang serius. Begitu pula, pernah ditemukan kontaminan toksik dari bakteri transgenik yang digunakan untuk menghasilkan pelengkap makanan (food supplement) triptofan. Kemungkinan timbulnya risiko yang sebelumnya tidak pernah terbayangkan terkait dengan akumulasi hasil metabolisme tanaman, hewan, atau mikroorganisme yang dapat memberikan kontribusi toksin, alergen, dan bahaya genetik lainnya di dalam pangan manusia.

Beberapa organisme transgenik telah ditarik dari peredaran karena terjadinya peningkatan kadar bahan toksik. Kentang Lenape (Amerika Serikat dan Kanada) dan kentang Magnum Bonum (Swedia) diketahui mempunyai kadar glikoalkaloid yang tinggi di dalam umbinya. Demikian pula, tanaman seleri transgenik (Amerika Serikat) yang resisten terhadap serangga ternyata memiliki kadar psoralen, suatu karsinogen, yang tinggi.

2. Potensi menimbulkan penyakit/gangguan kesehatan

WHO pada tahun 1996 menyatakan bahwa munculnya berbagai jenis bahan kimia baru, baik yang terdapat di dalam organisme transgenik maupun produknya, berpotensi menimbulkan penyakit baru atau pun menjadi faktor pemicu bagi penyakit lain. Sebagai contoh, gen aad yang terdapat di dalam kapas transgenik dapat berpindah ke bakteri penyebab kencing nanah (GO), Neisseria gonorrhoeae. Akibatnya, bakteri ini menjadi kebal terhadap antibiotik streptomisin dan spektinomisin. Padahal, selama ini hanya dua macam antibiotik itulah yang dapat mematikan bakteri tersebut. Oleh karena itu, penyakit GO dikhawatirkan tidak dapat diobati lagi dengan adanya kapas transgenik. Dianjurkan pada wanita penderita GO untuk tidak memakai pembalut dari bahan kapas transgenik.

Contoh lainnya adalah karet transgenik yang diketahui menghasilkan lateks dengan kadar protein tinggi sehingga apabila digunakan dalam pembuatan sarung tangan dan kondom, dapat diperoleh kualitas yang sangat baik. Namun, di Amerika Serikat pada tahun 1999 dilaporkan ada sekitar 20 juta penderita alergi akibat pemakaian sarung tangan dan kondom dari bahan karet transgenik.

Selain pada manusia, organisme transgenik juga diketahui dapat menimbulkan penyakit pada hewan. A. Putzai di Inggris pada tahun 1998 melaporkan bahwa tikus percobaan yang diberi pakan kentang transgenik memperlihatkan gejala kekerdilan dan imunodepresi. Fenomena yang serupa dijumpai pada ternak unggas di Indonesia, yang diberi pakan jagung pipil dan bungkil kedelai impor. Jagung dan bungkil kedelai tersebut diimpor dari negara-negara yang telah mengembangkan berbagai tanaman transgenik sehingga diduga kuat bahwa kedua tanaman tersebut merupakan tanaman transgenik.

Aspek lingkungan

1. Potensi erosi plasma nutfah

Penggunaan tembakau transgenik telah memupus kebanggaan Indonesia akan tembakau Deli yang telah ditanam sejak tahun 1864. Tidak hanya plasma nutfah tanaman, plasma nutfah hewan pun mengalami ancaman erosi serupa. Sebagai contoh, dikembangkannya tanaman transgenik yang mempunyai gen dengan efek pestisida, misalnya jagung Bt, ternyata dapat menyebabkan kematian larva spesies kupu-kupu raja (Danaus plexippus) sehingga dikhawatirkan akan menimbulkan gangguan keseimbangan ekosistem akibat musnahnya plasma nutfah kupu-kupu tersebut. Hal ini terjadi karena gen resisten pestisida yang terdapat di dalam jagung Bt dapat dipindahkan kepada gulma milkweed (Asclepia curassavica) yang berada pada jarak hingga 60 m darinya. Daun gulma ini merupakan pakan bagi larva kupu-kupu raja sehingga larva kupu-kupu raja yang memakan daun gulma milkweed yang telah kemasukan gen resisten pestisida tersebut akan mengalami kematian. Dengan demikian, telah terjadi kematian organisme nontarget, yang cepat atau lambat dapat memberikan ancaman bagi eksistensi plasma nutfahnya.

2. Potensi pergeseran gen

Daun tanaman tomat transgenik yang resisten terhadap serangga Lepidoptera setelah 10 tahun ternyata mempunyai akar yang dapat mematikan mikroorganisme dan organisme tanah, misalnya cacing tanah. Tanaman tomat transgenik ini dikatakan telah mengalami pergeseran gen karena semula hanya mematikan Lepidoptera tetapi kemudian dapat juga mematikan organisme lainnya. Pergeseran gen pada tanaman tomat transgenik semacam ini dapat mengakibatkan perubahan struktur dan tekstur tanah di areal pertanamannya.

3. Potensi pergeseran ekologi

Organisme transgenik dapat pula mengalami pergeseran ekologi. Organisme yang pada mulanya tidak tahan terhadap suhu tinggi, asam atau garam, serta tidak dapat memecah selulosa atau lignin, setelah direkayasa berubah menjadi tahan terhadap faktor-faktor lingkungan tersebut. Pergeseran ekologi organisme transgenik dapat menimbulkan gangguan lingkungan yang dikenal sebagai gangguan adaptasi.

Tanaman transgenik dapat menghasilkan protease inhibitor di dalam sari bunga sehingga lebah madu tidak dapat membedakan bau berbagai sari bunga. Hal ini akan mengakibatkan gangguan ekosistem lebah madu di samping juga terjadi gangguan terhadap madu yang diproduksi.

4. Potensi terbentuknya barrier species

Adanya mutasi pada mikroorganisme transgenik menyebabkan terbentuknya barrier species yang memiliki kekhususan tersendiri. Salah satu akibat yang dapat ditimbulkan adalah terbentuknya superpatogenitas pada mikroorganisme.

5. Potensi mudah diserang penyakit

Tanaman transgenik di alam pada umumnya mengalami kekalahan kompetisi dengan gulma liar yang memang telah lama beradaptasi terhadap berbagai kondisi lingkungan yang buruk. Hal ini mengakibatkan tanaman transgenik berpotensi mudah diserang penyakit dan lebih disukai oleh serangga.

Sebagai contoh, penggunaan tanaman transgenik yang resisten terhadap herbisida akan mengakibatkan peningkatan kadar gula di dalam akar. Akibatnya, akan makin banyak cendawan dan bakteri yang datang menyerang akar tanaman tersebut. Dengan perkataan lain, terjadi peningkatan jumlah dan jenis mikroorganisme yang menyerang tanaman transgenik tahan herbisida. Jadi, tanaman transgenik tahan herbisida justru memerlukan penggunaan pestisida yang lebih banyak, yang dengan sendirinya akan menimbulkan masalah tersendiri bagi lingkungan.

VEKTOR KLONING

Pengertian dan Macam-macam Vektor Kloning
Pada Bab IX antara lain telah dibicarakan bahwa transformasi sel inang dilakukan menggunakan perantara vektor. Jadi, vektor adalah molekul DNA yang berfungsi sebagai wahana atau kendaraan yang akan membawa suatu fragmen DNA masuk ke dalam sel inang dan memungkinkan terjadinya replikasi dan ekspresi fragmen DNA asing tersebut. Vektor yang dapat digunakan pada sel inang prokariot, khususnya E. coli, adalah plasmid, bakteriofag, kosmid, dan fasmid. Sementara itu, vektor YACs dan YEps dapat digunakan pada khamir. Plasmid Ti, baculovirus, SV40, dan retrovirus merupakan vektor-vektor yang dapat digunakan pada sel eukariot tingkat tinggi.

Plasmid
Secara umum plasmid dapat didefinisikan sebagai molekul DNA sirkuler untai ganda di luar kromosom yang dapat melakukan replikasi sendiri. Plasmid tersebar luas di antara organisme prokariot dengan ukuran yang bervariasi dari sekitar 1 kb hingga lebih dari 250 kb (1 kb = 1000 pb).
Agar dapat digunakan sebagai vektor kloning, plasmid harus memenuhi syarat-syarat berikut ini:

  1. mempunyai ukuran relatif kecil bila dibandingkan dengan pori dinding sel inang sehingga dapat dengan mudah melintasinya,

  2. mempunyai sekurang-kurangnya dua gen marker yang dapat menandai masuk tidaknya plasmid ke dalam sel inang,

  3. mempunyai tempat pengenalan restriksi sekurang-kurangnya di dalam salah satu marker yang dapat digunakan sebagai tempat penyisipan fragmen DNA, dan

  4. mempunyai titik awal replikasi (ori) sehingga dapat melakukan replikasi di dalam sel inang.

Salah satu contoh plasmid buatan yang banyak digunakan dalam kloning gen adalah pBR322. Plasmid ini dikonstruksi oleh F. Bolivar dan kawan-kawanya pada tahun 1977. Urutan basa lengkapnya telah ditentukan sehingga baik tempat marker maupun pengenalan restriksinya juga telah diketahui. Sayangnya, tempat pengenalan EcoR I, salah satu enzim restriksi yang sangat umum digunakan, terletak di luar marker. Oleh karena salah satu marker akan menjadi tempat penyisipan fragmen DNA asing, maka EcoR I tidak dapat digunakan untuk memotong pBR322 di tempat penyisipan tersebut. Namun, saat ini telah dikonstruksi derivat-derivat pBR322 yang mempunyai tempat pengenalan EcoR I di dalam marker, misalnya plasmid pBR324 dan pBR325 yang masing-masing mempunyai tempat pengenalan EcoR I di dalam gen struktural kolisin dan di dalam gen resisten kloramfenikol.

Misalnya saja kita menyisipkan suatu fragmen DNA pada daerah marker resisten ampisilin dengan memotong daerah ini menggunakan enzim restriksi tertentu selain EcoR I (mengapa harus selain EcoR I?). Plasmid pBR322 yang tersisipi oleh fragmen DNA akan kehilangan sifat resistensinya terhadap ampisilin, tetapi masih mempunyai sifat resistensi terhadap tetrasiklin. Oleh karena itu, ketika plasmid pBR322 rekombinan ini dimasukkan ke dalam sel inangnya, yakni E. coli, bakteri transforman ini tidak mampu tumbuh pada medium yang mengandung ampisilin, tetapi tumbuh pada medium tetrasiklin. Secara alami E. coli tidak mampu tumbuh baik pada medium ampisilin maupun tetrasiklin sehingga sel transforman dapat dengan mudah dibedakan dengan sel nontransforman yang tidak mengandung pBR322 sama sekali. Sementara itu, E. coli transforman yang membawa plasmid pBR322 utuh (religasi) mampu tumbuh pada kedua medium antibiotik tersebut. Jadi, untuk memperoleh sel E. coli transforman yang membawa DNA rekombinan dicari koloni yang hidup di tetrasiklin tetapi mati di ampisilin. Secara teknis pekerjaan ini dilakukan menggunakan transfer koloni atau replica plating (lihat Bab X).
Plasmid yang digunakan pada bakteri gram negatif seperti halnya pBR322 tidak dapat digunakan pada bakteri gram positif. Namun, saat ini telah tersedia plasmid untuk kloning pada bakteri gram positif, misalnya pT127 dan pC194, yang dikonstruksi oleh S.D. Erlich pada tahun 1977 dari bakteri Staphylococcus aureus. Demikian juga, telah ditemukan plasmid untuk kloning pada eukariot, khususnya pada khamir, misalnya yeast integrating plasmids (YIps), yeast episomal plasmids (YEps), yeast replicating plasmids (YRps), dan yeast centromere plasmid (YCps).
Bakteriofag
Bakteriofag adalah virus yang sel inangnya berupa bakteri. Dengan daur hidupnya yang bersifat litik atau lisogenik bakteriofag dapat digunakan sebagai vektor kloning pada sel inang bakteri. Ada beberapa macam bakteriofag yang biasa digunakan sebagai vektor kloning. Dua di antaranya akan dijelaskan berikut ini.
Bakteriofag l
Bakteriofag atau fag l merupakan virus kompleks yang menginfeksi bakteri E. coli. Berkat pengetahuan yang memadai tentang fag ini, kita dapat memanfaatkannya sebagai vektor kloning semenjak masa-masa awal perkembangan rekayasa genetika. DNA l yang diisolasi dari partikel fag ini mempunyai konformasi linier untai ganda dengan panjang 48,5 kb. Namun, masing-masing ujung fosfatnya berupa untai tunggal sepanjang 12 pb yang komplementer satu sama lain sehingga memungkinkan DNA l untuk berubah konformasinya menjadi sirkuler. Dalam bentuk sirkuler, tempat bergabungnya kedua untai tunggal sepanjang 12 pb tersebut dinamakan kos.
Seluruh urutan basa DNA l telah diketahui. Secara alami terdapat lebih dari satu tempat pengenalan restriksi untuk setiap enzim restriksi yang biasa digunakan. Oleh karena itu, DNA l tipe alami tidak cocok untuk digunakan sebagai vektor kloning. Akan tetapi, saat ini telah banyak dikonstruksi derivat-derivat DNA l yang memenuhi syarat sebagai vektor kloning. Ada dua macam vektor kloning yang berasal dari DNA l, yaitu
vektor insersional, yang dengan mudah dapat disisipi oleh fragmen DNA asing, vektor substitusi, yang untuk membawa fragmen DNA asing harus membuang sebagian atau seluruh urutan basanya yang terdapat di daerah nonesensial dan menggantinya dengan urutan basa fragmen DNA asing tersebut.
Di antara kedua macam vektor l tersebut, vektor substitusi lebih banyak digunakan karena kemampuannya untuk membawa fragmen DNA asing hingga 23 kb. Salah satu contohnya adalah vektor WES, yang mempunyai mutasi pada tiga gen esensial, yaitu gen W, E, dan S. Vektor ini hanya dapat digunakan pada sel inang yang dapat menekan mutasi tersebut.
Cara substitusi fragmen DNA asing pada daerah nonesensial membutuhkan dua tempat pengenalan restriksi untuk setiap enzim restriksi. Jika suatu enzim restrisksi memotong daerah nonesensial di dua tempat berbeda, maka segmen DNA l di antara kedua tempat tersebut akan dibuang untuk selanjutnya digantikan oleh fragmen DNA asing. Jika pembuangan segmen DNA l tidak diikuti oleh substitusi fragmen DNA asing, maka akan terjadi religasi vektor DNA l yang kehilangan sebagian segmen pada daerah nonesensial. Vektor religasi semacam ini tidak akan mampu bertahan di dalam sel inang. Dengan demikian, ada suatu mekanisme seleksi automatis yang dapat membedakan antara sel inang dengan vektor rekombinan dan sel inang dengan vektor religasi.

Bakteriofag l mempunyai dua fase daur hidup, yaitu fase litik dan fase lisogenik. Pada fase litik, transfeksi sel inang (istilah transformasi untuk DNA fag) dimulai dengan masuknya DNA l yang berubah konformasinya menjadi sirkuler dan mengalami replikasi secara independen atau tidak bergantung kepada kromosom sel inang. Setelah replikasi menghasilkan sejumlah salinan DNA l sirkuler, masing-masing DNA ini akan melakukan transkripsi dan translasi membentuk protein kapsid (kepala). Selanjutnya, tiap DNA akan dikemas (packaged) dalam kapsid sehingga dihasilkan partikel l baru yang akan keluar dari sel inang untuk menginfeksi sel inang lainnya. Sementara itu, pada fase lisogenik DNA l akan terintegrasi ke dalam kromosom sel inang sehingga replikasinya bergantung kepada kromosom sel inang. Fase lisogenik tidak menimbulkan lisis pada sel inang.
Di dalam medium kultur, sel inang yang mengalami lisis akan membentuk plak (plaque) berupa daerah bening di antara koloni-koloni sel inang yang tumbuh. Oleh karena itu, seleksi vektor rekombinan dapat dilakukan dengan melihat terbentuknya plak tersebut.
Bakteriofag M13
Ada jenis bakteriofag lainnya yang dapat menginfeksi E. coli. Berbeda dengan l yang mempunyai struktur ikosahedral berekor, fag jenis kedua ini mempunyai struktur berupa filamen. Contoh yang paling penting adalah M13, yang mempunyai genom berupa untai tunggal DNA sirkuler sepanjang 6.408 basa. Infeksinya pada sel inang berlangsung melalui pili, suatu penonjolan pada permukaan sitoplasma.
Ketika berada di dalam sel inang genom M13 berubah menjadi untai ganda sirkuler yang dengan cepat akan bereplikasi menghasilkan sekitar 100 salinan. Salinan-salinan ini membentuk untai tunggal sirkuler baru yang kemudian bergerak ke permukaan sel inang. Dengan cara seperti ini DNA M13 akan terselubungi oleh membran dan keluar dari sel inang menjadi partikel fag yang infektif tanpa menyebabkan lisis. Oleh karena fag M13 terselubungi dengan cara pembentukan kuncup pada membran sel inang, maka tidak ada batas ukuran DNA asing yang dapat disisipkan kepadanya. Inilah salah satu keuntungan penggunaan M13 sebagai vektor kloning bila dibandingkan dengan plasmid dan l. Keuntungan lainnya adalah bahwa M13 dapat digunakan untuk sekuensing (penentuan urutan basa) DNA dan mutagenesis tapak terarah (site directed mutagenesis) karena untai tunggal DNA M13 dapat dijadikan cetakan (templat) di dalam kedua proses tersebut.
Meskipun demikian, M13 hanya mempunyai sedikit sekali daerah pada DNAnya yang dapat disisipi oleh DNA asing. Di samping itu, tempat pengenalan restriksinya pun sangat sedikit. Namun, sejumlah derivat M13 telah dikonstruksi untuk mengatasi masalah tersebut.
Kosmid
Kosmid merupakan vektor yang dikonstruksi dengan menggabungkan kos dari DNA l dengan plasmid. Kemampuannya untuk membawa fragmen DNA sepanjang 32 hingga 47 kb menjadikan kosmid lebih menguntungkan daripada fag l dan plasmid.
Fasmid
Selain kosmid, ada kelompok vektor sintetis yang merupakan gabungan antara plasmid dan fag l. Vektor yang dinamakan fasmid ini membawa segmen DNA l yang berisi tempat att. Tempat att digunakan oleh DNA l untuk berintegrasi dengan kromosom sel inang pada fase lisogenik.
Vektor YACs
Seperti halnya kosmid, YACs (yeast artifisial chromosomes atau kromosom buatan dari khamir) dikonstruksi dengan menggabungkan antara DNA plasmid dan segmen tertentu DNA kromosom khamir. Segmen kromosom khamir yang digunakan terdiri atas sekuens telomir, sentromir, dan titik awal replikasi.
YACs dapat membawa fragmen DNA genomik sepanjang lebih dari 1 Mb. Oleh karena itu, YACs dapat digunakan untuk mengklon gen utuh manusia, misalnya gen penyandi cystic fibrosis yang panjangnya 250 kb. Dengan kemampuannya itu YACs sangat berguna dalam pemetaan genom manusia seperti yang dilakukan pada Proyek Genom Manusia.
Vektor YEps
Vektor-vektor untuk keperluan kloning dan ekspresi gen pada Saccharomyces cerevisiae dirancang atas dasar plasmid alami berukuran 2 μm, yang selanjutnya dikenal dengan nama plasmid 2 mikron. Plasmid ini memiliki sekuens DNA sepanjang 6 kb, yang mencakup titik awal replikasi dan dua gen yang terlibat dalam replikasi.
Vektor-vektor yang dirancang atas dasar plasmid 2 mikron disebut YEps (yeast episomal plasmids). Segmen plasmid 2 mikronnya membawa titik awal replikasi, sedangkan segmen kromosom khamirnya membawa suatu gen yang berfungsi sebagai penanda seleksi, misalnya gen LEU2 yang terlibat dalam biosintesis leusin. Meskipun biasanya bereplikasi seperti plasmid pada umumnya, YEps dapat terintegrasi ke dalam kromosom khamir inangnya.
Plasmid Ti Agrobacterium tumefaciens
Sel-sel tumbuhan tidak mengandung plasmid alami yang dapat digunakan sebagai vektor kloning. Akan tetapi, ada suatu bakteri, yaitu Agrobacterium tumefaciens, yang membawa plasmid berukuran 200 kb dan disebut plasmid Ti (tumor inducing atau penyebab tumor). Bakteri A. tumefaciens dapat menginfeksi tanaman dikotil seperti tomat dan tembakau serta tanaman monokotil, khususnya padi. Ketika infeksi berlangsung bagian tertentu plasmid Ti, yang disebut T-DNA, akan terintegrasi ke dalam DNA kromosom tanaman, mengakibatkan terjadinya pertumbuhan sel-sel tanaman yang tidak terkendali. Akibatnya, akan terbentuk tumor atau crown gall.
Plasmid Ti rekombinan dengan suatu gen target yang disisipkan pada daerah T-DNA dapat mengintegrasikan gen tersebut ke dalam DNA tanaman. Gen target ini selanjutnya akan dieskpresikan menggunakan sistem DNA tanaman.
Dalam prakteknya, ukuran plasmid Ti yang begitu besar sangat sulit untuk dimanipulasi. Namun, ternyata apabila bagian T-DNA dipisahkan dari bagian-bagian lain plasmid Ti, integrasi dengan DNA tanaman masih dapat terjadi asalkan T-DNA dan bagian lainnya tersebut masih berada di dalam satu sel bakteri A. tumefaciens. Dengan demikian, manipulasi atau penyisipan fragmen DNA asing hanya dilakukan pada T-DNA dengan cara seperti halnya yang dilakukan pada plasmid E.coli. Selanjutnya, plasmid T-DNA rekombinan yang dihasilkan ditransformasikan ke dalam sel A. tumefaciens yang membawa plasmid Ti tanpa bagian T-DNA. Perbaikan prosedur berikutnya adalah pembuangan gen-gen pembentuk tumor yang terdapat pada T-DNA.
Baculovirus
Baculovirus merupakan virus yang menginfeksi serangga. Salah satu protein penting yang disandi oleh genom virus ini adalah polihedrin, yang akan terakumulasi dalam jumlah sangat besar di dalam nuklei sel-sel serangga yang diinfeksi karena gen tersebut mempunyai promoter yang sangat aktif. Promoter ini dapat digunakan untuk memacu overekspresi gen-gen asing yang diklon ke dalam genom bacilovirus sehingga akan diperoleh produk protein yang sangat banyak jumlahnya di dalam kultur sel-sel serangga yang terinfeksi.
Vektor Kloning pada Mamalia
Vektor untuk melakukan kloning pada sel-sel mamalia juga dikonstruksi atas dasar genom virus. Salah satu di antaranya yang telah cukup lama dikenal adalah SV40, yang menginfeksi berbagai spesies mamalia. Genom SV40 panjangnya hanya 5,2 kb. Genom ini mengalami kesulitan dalam pengepakan (packaging) sehingga pemanfaatan SV40 untuk mentransfer fragmen–fragmen berukuran besar menjadi terbatas.
Retrovirus mempunyai genom berupa RNA untai tunggal yang ditranskripsi balik menjadi DNA untai ganda setelah terjadi infeksi. DNA ini kemudian terintegrasi dengan stabil ke dalam genom sel mamalia inang sehingga retrovirus telah digunakan sebagai vektor dalam terapi gen. Retrovirus mempunyai beberapa promoter yang kuat.

PERPUSTAKAAN GEN

Pengertian dan Macam Perpustakaan Gen

Suatu perpustakaan gen dapat diartikan sebagai sekumpulan sekuens (urutan) DNA dari suatu organisme yang masing-masing telah diklon ke dalam vektor tertentu untuk memudahkan pemurnian, penyimpanan, dan analisisnya. Pada dasarnya terdapat dua macam perpustakaan gen yang dapat dikonstruksi, bergantung kepada sumber DNA digunakan. Jika DNA yang digunakan adalah DNA genomik/kromosom, maka perpustakaan yang dihasilkan disebut perpustakaan genom. Sementara itu, jika DNA yang digunakan merupakan hasil transkripsi balik suatu populasi mRNA seperti yang umum dijumpai pada eukariot, maka perpustakaan yang diperoleh dinamakan perpustakaan cDNA.

Hal yang perlu diperhatikan ketika kita melakukan konstruksi suatu perpustakaan gen adalah bahwa perpustakaan tersebut harus merepresentasikan semua gen yang ada di dalam sumber DNA asalnya. Dengan perkataan lain, suatu perpustakaan gen dikatakan representatif apabila berisi semua sekuens aslinya. Selain itu, jika suatu perpustakaan tidak mengandung klon dalam jumlah yang mencukupi, maka sangat dimungkinkan hilangnya beberapa gen tertentu.

Untuk mendapatkan perpustakaan genom yang representatif, DNA genomik harus dimurnikan dan kemudian dipotong secara acak menjadi fragmen-fragmen yang ukurannya sesuai dengan keperluan kloning menggunakan vektor yang dipilih. Fraksionasi sel pada eukariot akan mengurangi kontaminasi oleh DNA organel (mitokondria, kloroplas). Oleh karena itu, pemurnian DNA genomik eukariot biasanya dilakukan dengan terlebih dahulu mengisolasi nukleus dan menghilangkan protein, lemak, serta makromolekul lain yang tidak diinginkan dengan memberikan protease dan melakukan ekstraksi fenol-kloroform. Sementara itu, DNA prokariot dapat diekstraksi langsung.

DNA genomik hasil pemurnian tersebut selanjutnya dipotong-potong secara acak. Pada dasarnya ada dua cara pemotongan, yaitu pemotongan fisik seperti sonikasi dan digesti menggunakan enzim restriksi. Pemotongan dengan enzim restriksi akan menghasilkan fragmen-fragmen dengan ujung tertentu (lihat Bab IX). Untuk mendapatkan fragmen-fragmen dengan ukuran relatif besar dilakukan digesti parsial dengan cara mengurangi jumlah enzim restriksi atau waktu pemotongan yang digunakan Dengan digesti parsial ini enzim restriksi tidak akan memotong DNA genomik pada setiap tempat pengenalan yang ada sehingga akan diperoleh fragmen-fragmen DNA genomik yang relatif panjang.

Besarnya Perpustakaan Gen

Besarnya suatu perpustakaan gen dilihat dari banyaknya rekombinan yang terdapat di dalamnya. Untuk menghitung banyaknya rekombinan yang harus ada di dalam suatu perpustakaan gen digunakan rumus sebagai berikut.

N = ln (1 – P) / ln (1 – f)

Pada rumus tersebut N adalah banyaknya rekombinan yang harus ada di dalam perpustakaan gen, P peluang yang diinginkan, dan f nisbah panjang fragmen sisipan terhadap panjang genom. Sebagai contoh, untuk mendapatkan fragmen sisipan berukuran 20 kb (20.000 pb) dengan peluang 0,99 diperlukan perpustakaan gen yang besarnya berbeda antara E .coli dan manusia.

N E. coli = ln (1 – 0,99) / ln (1 – 20.000 / 4,6 x 106) = 1,1 x 103

N manusia = ln (1 – 0,99) / ln (1 – 20.000 / 3 x 109) = 6,9 x 105

Kita bisa melihat bahwa banyaknya rekombinan yang diperlukan untuk mendapatkan fragmen dengan ukuran dan peluang yang sama ternyata berbeda, bergantung kepada panjang genom organismenya. Pada E. coli dengan panjang genom yang lebih pendek (4,6 x 106) daripada panjang genom manusia (3 x 109) diperlukan rekombinan yang lebih sedikit (1,1 x 103) daripada rekombinan untuk perpustakaan gen manusia (6,9 x 105).

Perhitungan seperti tersebut di atas juga dapat menjelaskan alasan bahwa apabila genom suatu prokariot dengan fragmen sisipan sepanjang 5 hingga 10 kb diklon menggunakan plasmid akan menghasilkan perpustakaan gen yang baik meskipun hanya membawa beberapa ribu rekombinan. Demikian pula, untuk genom-genom yang besar cukup diperlukan sedikit rekombinan meskipun fragmen sisipannya panjang. Penggunaan vektor yang dapat mengklon fragmen-fragmen panjang, misalnya kosmid dan YAC, memungkinkan konstruksi perpustakaan genom dengan jumlah rekombinan yang tidak terlalu besar.

Elektroforesis

Sebelum fragmen-fragmen DNA genomik hasil digesti restriksi diligasikan ke dalam suatu vektor tertentu (lihat Bab IX) terlebih dahulu perlu dilakukan pemeriksaan atas keberhasilan digesti tersebut. Untuk melihat keberhasilan digesti restriksi, DNA divisualisasikan menggunakan teknik elektroforesis. Namun, elektroforesis sendiri sebenarnya bukanlah teknik visualisasi DNA semata-mata karena teknik ini dapat juga digunakan untuk keperluan isolasi dan pemurnian fragmen DNA tertentu.

Prinsip kerja elektroforesis adalah memisahkan molekul-molekul bermuatan listrik berdasarkan atas ukuran (berat molekul) dan muatan listriknya. Khusus untuk DNA, pemisahan tidak didasarkan atas perbedaan muatan listriknya, tetapi menurut ukuran dan konformasi atau struktur fisik molekulnya. Gel yang biasa digunakan adalah agarosa dan poliakrilamid. Gel agarosa digunakan untuk memisahkan sampel DNA dengan ukuran dari beberapa ratus hingga 20.000 pasang basa (pb), sedangkan gel poliakrilamid digunakan untuk fragmen-fragmen DNA yang lebih kecil.

Molekul DNA bermuatan negatif sehingga di dalam medan listrik akan bermigrasi melalui matriks gel menuju kutub positif (anode). Makin besar ukuran molekulnya, makin rendah laju migrasinya. Jika hubungan antara ukuran molekul dan laju migrasi dipetakan dalam suatu grafik logaritmik, maka akan diperoleh kurva linier. Oleh karena itu, kita dapat memperkirakan berat molekul suatu fragmen DNA dengan melihat atau membandingkan laju migrasinya dengan laju migrasi fragmen-fragmen molekul DNA strandar (marker) yang telah diketahui ukurannya.

Fragmen-fragmen DNA divisualisasikan di bawah sinar ultraviolet setelah terlebih dulu direndam di dalam larutan etidium bromid, pewarna yang akan menyisip atau melakukan interkalasi di sela-sela basa DNA. Perendaman dilakukan setelah migrasi dianggap cukup untuk dihentikan. Fragmen DNA akan nampak sebagai pita berwarna merah dengan posisi migrasi yang sesuai dengan berat molekulnya. Cara ini dapat memvisualisasikan fragmen DNA hingga sekecil 0,05 µg.

Seperti telah dikatakan di atas bahwa selain karena perbedaan ukurannya, laju migrasi DNA pada gel elektroforesis juga ditentukan oleh konformasi molekulnya. DNA dengan bentuk covalently closed circular (CCC) akan bergerak paling cepat, disusul berikutnya konformasi open circular (OC), dan yang terakhir linier. Oleh karena perbedaan konformasi menyebabkan perbedaan laju migrasi, maka penentuan ukuran suatu fragmen DNA selalu dilakukan pada konformasi linier.

Marilah kembali kita bicarakan visualisasi fragmen-fragmen DNA genomik hasil digesti restriksi. DNA genomik, baik yang utuh maupun yang telah dipotong menggunakan enzim restriksi, perlu divisualisasikan pada gel elektroforesis. Begitu pula halnya dengan vektor utuh dan vektor yang telah dilinierkan serta vektor rekombinan hasil ligasi dengan fragmen DNA genomik (lihat Bab IX). Selain itu, molekul DNA marker yang telah diketahui ukurannya juga dimigrasikan sebagai standar untuk menentukan ukuran sampel-sampel DNA yang kita analisis.

DNA genomik utuh pada lajur 2 nampak sebagai pita dengan laju migrasi paling lambat. Jika dibandingkan dengan marker, akan terlihat bahwa ukurannya lebih besar dari 21,3 kb. Berikutnya pada lajur 3, DNA genomik yang telah dipotong menggunakan enzim restriksi tertentu tervisualisasi sebagai pita melebar (smear). Pita ini merupakan kumpulan fragmen-fragmen DNA hasil pemotongan tersebut yang sangat bervariasi ukurannya. Sementara itu, pada lajur 4 dan 5 terlihat jelas perbedaan laju migrasi antara plasmid utuh yang mempunyai konformasi CCC dan plasmid linier hasil pemotongan dengan suatu enzim restriksi. Plasmid linier bergerak lebih lambat daripada plasmid CCC, dan posisi migrasinya digunakan untuk menentukan ukurannya (sekitar 4,9 kb). Terakhir pada lajur 6, plasmid rekombinan hasil ligasi dengan fragmen DNA genomik menunjukkan ukuran yang lebih besar dari 4,9 kb. Hal ini terlihat dari migrasinya yang lebih lambat daripada plasmid linier tanpa fragmen sisipan.

Prosedur Skrining

Proses untuk mengidentifikasi suatu klon yang membawa gen tertentu yang diinginkan di antara sejumlah besar klon lainnya di dalam perpustakaan gen dinamakan skrining. Pada dasarnya skrining dilakukan dengan teknik hibridisasi menggunakan suatu molekul pelacak DNA (DNA probe). Beberapa pengetahuan mengenai gen yang akan dicari, atau produknya, diperlukan dalam pembuatan molekul pelacak bagi gen tersebut. Di dalam proses skrining, molekul pelacak akan menempel pada sekuens DNA yang komplementer dengannya sehingga klon yang diinginkan dapat dikenali.

Apabila diperoleh protein yang merupakan produk gen tertentu dalam jumlah yang memungkinkan untuk penentuan sekuens asam aminonya, maka dari informasi sekuens asam amino ini dapat disusun beberapa kemungkinan sekuens DNA yang menyandinya. Selanjutnya, informasi sekuens DNA yang disusun dapat digunakan untuk membuat molekul pelacak.

Hibridisasi koloni dan plak

Seleksi transforman dengan vektor rekombinan yang dikonstruksi menggunakan vektor λ dilakukan dengan melihat terbentuknya plak pada medium kultur sel inang. Sementara itu, seleksi transforman dengan vektor rekombinan yang dikonstruksi menggunakan plasmid dilakukan dengan melihat pertumbuhan koloni pada medium seleksi . Namun, prosedur skrining bagi kedua sistem kloning tersebut pada dasarnya sama saja.

Langkah pertama adalah mentransfer DNA di dalam plak atau koloni ke suatu membran nilon atau nitroselulosa. Untuk plak, DNA λ dapat langsung diperoleh dan ditransfer ke membran karena plak merupakan area tempat keberadaan bakteri inang yang mengalami lisis. Akan tetapi, jika yang ditransfer ke membran adalah koloni-koloni bakteri, maka perlu dilakukan lisis sel bakteri untuk mendapatkan DNA. Sebelumnya, dibuat replika bagi koloni-koloni yang ditransfer tersebut di dalam medium kultur yang baru.

Lisis sel bakteri biasanya dilakukan dengan merendam membran nilon di dalam sodium dodesil sulfat (SDS) dan protease. Selanjutnya, DNA yang keluar dari sel didenaturasi menggunakan alkali sehingga diperoleh DNA untai tunggal, yang kemudian difiksasi ke membran dengan pengeringan atau iradiasi UV. Membran dicelupkan ke dalam larutan pelacak DNA dan diinkubasi agar terjadi hibridisasi antara pelacak, yang juga berupa untai tunggal, dan beberapa DNA untai tunggal yang komplementer dengannya. Pelacak DNA biasanya diberi label radioaktif.

Setelah hibridisasi, membran dicuci untuk menghilangkan sisa-sisa pelacak yang tidak terhibridisasi. Beberapa DNA di dalam membran yang mengalami hibridisasi divisualisasikan menggunakan autoradiografi dengan sinar X. Dengan membandingkan posisi DNA yang terhibridisasi oleh pelacak dengan posisi koloni pada kultur replika akan diketahui koloni-koloni yang membawa DNA rekombinan dengan fragmen sisipan yang diinginkan.

Skrining ekspresi

Pada dasarnya skrining ekspresi sama dengan skrining perpustakaan gen melalui hibridisasi koloni/plak. Hanya saja pada skrining ekspresi, bukannya DNA yang dideteksi pada membran, melainkan protein yang merupakan produk suatu gen yang diinginkan. Sebagai pelacak digunakan antibodi, sedangkan untuk mengetahui terjadinya hibridisasi digunakan antibodi lain atau bahan kimia yang dapat mengenalinya. Dengan cara seperti ini dapat ditentukan koloni/plak yang mengekspresikan protein yang dikehendaki.

Penghambatan dan pelepasan translasi oleh hibrid

Klon-klon cDNA dapat digunakan untuk menghibridisasi mRNA yang diisolasi. Setelah dilakukan hibridisasi, populasi mRNA langsung ditranslasi menjadi protein. Translasi tidak akan terjadi pada segmen mRNA yang terhibridisasi oleh cDNA, atau dengan perkataan lain, translasi telah dihambat oleh hibrid (hybrid-arrest translation). Dengan mendeteksi produk-produk protein yang tidak terbentuk dapat diketahui cDNA yang menghambat translasi suatu protein. Artinya, cDNA ini dapat dipastikan membawa sekuens yang menyandi protein yang tidak ditranslasi tersebut.

Cara kebalikannya juga dapat dilakukan. Hibrid-hibrid antara cDNA dan mRNA dimurnikan.

Kemudian, mRNA dilepaskan dari hibrid dengan pemanasan atau menggunakan agen denaturasi.

Setelah itu, mRNA ditranslasi (hybrid-release translation) untuk menghasilkan produk protein

tertentu. Dengan mengetahui protein yang terbentuk dapat diketahui klon cDNA yang membawa

sekuens penyandi protein tersebut.


Southern blotting dan Northern blotting

Kedua prosedur skrining ini digunakan untuk mendeteksi keberadaan sekuens tertentu tetapi tidak dilakukan langsung pada klon-klon rekombinannya. Skrining didasarkan atas hasil hibridisasi antara molekul asam nukleat dan pelacaknya pada gel agarosa. Istilah Southern blotting berasal dari nama penemunya, sedangkan Northern blotting diekstrapolasi dari nama tersebut. Jika Southern blotting ditujukan untuk DNA, Northern blotting digunakan untuk hibridisasi RNA.

Tahap pertama untuk kedua prosedur tersebut adalah migrasi molekul asam nukleat pada gel agarosa. Khusus untuk Southern blotting, dilakukan denaturasi DNA (biasanya menggunakan alkali) sehingga akan diperoleh DNA untai tunggal. Pita-pita untai tunggal, baik DNA maupun RNA, kemudian dipindahkan ke membran nilon atau nitroselulosa seperti halnya pada hibridisasi koloni.

Begitu asam nukleat dipindahkan ke membran, tahap-tahap selanjutnya pada kedua prosedur skrining tersebut sama, yaitu fiksasi asam nukleat pada membran, hibridisasi dengan pelacak, pencucian sisa pelacak, dan deteksi fragmen yang mengalami hibridisasi menggunakan autoradiografi. Di antara tahap-tahap tersebut kondisi hibridisasi merupakan faktor yang paling memerlukan perhatian. Jika antara pelacak dan sekuens target terdapat homologi yang sangat tinggi (mendekati atau sama dengan 100%), maka dapat diberlakukan kondisi hibridisasi yang ketat, yaitu dengan suhu hibridisasi tinggi dan konsentrasi garam rendah pada bufer hibridisasi. Sebaliknya, jika sekuens pelacak tidak terlalu homolog dengan sekuens target, maka ketetatan kondisi hibridisasi harus diturunkan sampai pada tingkatan yang memungkinkan terbentuknya hibrid-hibrid yang kurang sempurna. Namun, jika keketatannya diturunkan terlalu banyak, fragmen pelacak mungkin akan berikatan dengan sekuens-sekuens lain yang tidak spesifik.

Southern blotting terhadap fragmen-fragmen DNA genomik yang diklon dapat dilakukan menggunakan pelacak berupa cDNA untuk mencari bagian-bagian klon genomik yang sesuai dengan fragmen cDNA pelacak. Jika fragmen DNA genomik yang membawa suatu gen tertentu dapat dideteksi, maka akan diketahui ukuran fragmen yang membawa gen tersebut. Blot-blot dengan sampel DNA atau RNA dari organisme yang berbeda (zoo blots) dapat menunjukkan betapa konservatifnya suatu gen di antara spesies yang satu dan lainnya.

Rabu, 29 Desember 2010

REPLIKASI DNA

Fungsi DNA sebagai Materi Genetik

DNA sebagai materi genetik pada sebagian besar organisme harus dapat menjalankan tiga macam fungsi pokok berikut ini.

DNA harus mampu menyimpan informasi genetik dan dengan tepat dapat meneruskan informasi tersebut dari tetua kepada keturunannya, dari generasi ke generasi. Fungsi ini merupakan fungsi genotipik, yang dilaksanakan melalui replikasi.

DNA harus mengatur perkembangan fenotipe organisme. Artinya, materi genetik harus mengarahkan pertumbuhan dan diferensiasi organisme mulai dari zigot hingga individu dewasa. Fungsi ini merupakan fungsi fenotipik, yang dilaksanakan melalui ekspresi gen.

DNA sewaktu-waktu harus dapat mengalami perubahan sehingga organisme yang bersangkutan akan mampu beradaptasi dengan kondisi lingkungan yang berubah. Tanpa perubahan semacam ini, evolusi tidak akan pernah berlangsung. Fungsi ini merupakan fungsi evolusioner, yang dilaksanakan melalui peristiwa mutasi.

Mekanisme Replikasi Semikonservatif

Ada tiga cara teoretis replikasi DNA yang pernah diusulkan, yaitu konservatif, semikonservatif, dan dispersif. Pada replikasi konservatif seluruh tangga berpilin DNA awal tetap dipertahankan dan akan mengarahkan pembentukan tangga berpilin baru. Pada replikasi semikonservatif tangga berpilin mengalami pembukaan terlebih dahulu sehingga kedua untai polinukleotida akan saling terpisah. Namun, masing-masing untai ini tetap dipertahankan dan akan bertindak sebagai cetakan (template) bagi pembentukan untai polinukleotida baru. Sementara itu, pada replikasi dispersif kedua untai polinukleotida mengalami fragmentasi di sejumlah tempat. Kemudian, fragmen-fragmen polinukleotida yang terbentuk akan menjadi cetakan bagi fragmen nukleotida baru sehingga fragmen lama dan baru akan dijumpai berselang-seling di dalam tangga berpilin yang baru. konservatif semikonservatif dispersif. Tiga cara teoretis replikasi DNA
= untai lama = untai baru.
Di antara ketiga cara replikasi DNA yang diusulkan tersebut, hanya cara semikonservatif yang dapat dibuktikan kebenarannya melalui percobaan yang dikenal dengan nama sentrifugasi seimbang dalam tingkat kerapatan atau equilibrium density-gradient centrifugation. Percobaan ini dilaporkan hasilnya pada tahun 1958 oleh M.S. Meselson dan F.W. Stahl.

Mereka menumbuhkan bakteri Escherichia coli selama beberapa generasi di dalam medium yang mengandung isotop nitrogen 15N untuk menggantikan isotop nitrogen normal 14N yang lebih ringan. Akibatnya, basa-basa nitrogen pada molekul DNA sel-sel bakteri tersebut akan memiliki 15N yang berat. Molekul DNA dengan basa nitrogen yang mengandung 15N mempunyai tingkat kerapatan (berat per satuan volume) yang lebih tinggi daripada DNA normal (14N). Oleh karena molekul-molekul dengan tingkat kerapatan yang berbeda dapat dipisahkan dengan cara sentrifugasi tersebut di atas, maka Meselson dan Stahl dapat mengikuti perubahan tingkat kerapatan DNA sel-sel bakteri E. coli yang semula ditumbuhkan pada medium 15N selama beberapa generasi, kemudian dikembalikan ke medium normal 14N selama beberapa generasi berikutnya.

Molekul DNA mempunyai kerapatan yang lebih kurang sama dengan kerapatan larutan garam yang sangat pekat seperti larutan 6M CsCl (sesium khlorida). Sebagai perbandingan, kerapatan DNA E.coli dengan basa nitrogen yang mengandung isotop 14N dan 15N masing-masing adalah 1,708 g/cm3 dan 1,724 g/cm3, sedangkan kerapatan larutan 6M CsCl adalah 1,700 g/cm3.

Ketika larutan 6M CsCl yang di dalamnya terdapat molekul DNA disentrifugasi dengan kecepatan sangat tinggi, katakanlah 30.000 hingga 50.000 rpm, dalam waktu 48 hingga 72 jam, maka akan terjadi keseimbangan tingkat kerapatan. Hal ini karena molekul-molekul garam tersebut akan mengendap ke dasar tabung sentrifuga akibat adanya gaya sentrifugal, sementara di sisi lain difusi akan menggerakkan molekul-molekul garam kembali ke atas tabung. Molekul DNA dengan tingkat kerapatan tertentu akan menempati kedudukan yang sama dengan kedudukan larutan garam yang tingkat kerapatannya sama dengannya.


Replikasi pada kedua untai DNA

Proses replikasi DNA yang kita bicarakan di atas sebenarnya barulah proses yang terjadi pada salah satu untai DNA. Untai DNA tersebut sering dinamakan untai pengarah (leading strand). Sintesis DNA baru pada untai pengarah ini berlangsung secara kontinyu dari ujung 5’ ke ujung 3’ atau bergerak di sepanjang untai pengarah dari ujung 3’ ke ujung 5’.

Pada untai DNA pasangannya ternyata juga terjadi sintesis DNA baru dari ujung 5’ ke ujung 3’ atau bergerak di sepanjang untai DNA cetakannya ini dari ujung 3’ ke ujung 5’. Namun, sintesis DNA pada untai yang satu ini tidak berjalan kontinyu sehingga menghasilkan fragmen terputus-putus, yang masing-masing mempunyai arah 5’→ 3’. Terjadinya sintesis DNA yang tidak kontinyu sebenarnya disebabkan oleh sifat enzim DNA polimerase yang hanya dapat menyintesis DNA dari arah 5’ ke 3’ serta ketidakmampuannya untuk melakukan inisiasi sintesis DNA.

Untai DNA yang menjadi cetakan bagi sintesis DNA tidak kontinyu itu disebut untai tertinggal (lagging strand). Sementara itu, fragmen-fragmen DNA yang dihasilkan dari sintesis yang tidak kontinyu dinamakan fragmen Okazaki, sesuai dengan nama penemunya. Fragmen-fragmen Okazaki akan disatukan menjadi sebuah untai DNA yang utuh dengan bantuan enzim DNA ligase.


Replikasi DNA prokariot

Replikasi DNA kromosom prokariot, khususnya bakteri, sangat berkaitan dengan siklus pertumbuhannya. Daerah ori pada E. coli, misalnya, berisi empat buah tempat pengikatan protein inisiator DnaA, yang masing-masing panjangnya 9 pb. Sintesis protein DnaA ini sejalan dengan laju pertumbuhan bakteri sehingga inisiasi replikasi juga sejalan dengan laju pertumbuhan bakteri. Pada laju pertumbuhan sel yang sangat tinggi, DNA kromosom prokariot dapat mengalami reinisiasi replikasi pada dua ori yang baru terbentuk, sebelum putaran replikasi yang pertama berakhir. Akibatnya, sel-sel hasil pembelahan akan menerima kromosom yang sebagian telah bereplikasi.

Protein DnaA membentuk struktur kompleks yang terdiri atas 30 hingga 40 buah molekul, yang masing-masing akan terikat pada molekul ATP. Daerah ori akan mengelilingi kompleks DnaA-ATP tersebut. Proses ini memerlukan kondisi superkoiling negatif DNA (pilinan kedua untai DNA berbalik arah sehingga terbuka). Superkoiling negatif akan menyebabkan pembukaan tiga sekuens repetitif sepanjang 13 pb yang kaya dengan AT sehingga memungkinkan terjadinya pengikatan protein DnaB, yang merupakan enzim helikase, yaitu enzim yang akan menggunakan energi ATP hasil hidrolisis untuk bergerak di sepanjang kedua untai DNA dan memisahkannya.

Untai DNA tunggal hasil pemisahan oleh helikase selanjutnya diselubungi oleh protein pengikat untai tunggal atau single-stranded binding protein (Ssb) untuk melindungi DNA untai tunggal dari kerusakan fisik dan mencegah renaturasi. Enzim DNA primase kemudian akan menempel pada DNA dan menyintesis RNA primer yang pendek untuk memulai atau menginisiasi sintesis pada untai pengarah.

Agar replikasi dapat terus berjalan menjauhi ori, diperlukan enzim helikase selain DnaB. Hal ini karena pembukaan heliks akan diikuti oleh pembentukan putaran baru berupa superkoiling positif. Superkoiling negatif yang terjadi secara alami ternyata tidak cukup untuk mengimbanginya sehingga diperlukan enzim lain, yaitu topoisomerase tipe II yang disebut dengan DNA girase. Enzim DNA girase ini merupakan target serangan antibiotik sehingga pemberian antibiotik dapat mencegah berlanjutnya replikasi DNA bakteri.

Seperti telah dijelaskan di atas, replikasi DNA terjadi baik pada untai pengarah maupun pada untai tertinggal. Pada untai tertinggal suatu kompleks yang disebut primosom akan menyintesis sejumlah RNA primer dengan interval 1.000 hingga 2.000 basa. Primosom terdiri atas helikase DnaB dan DNA primase.

Primer baik pada untai pengarah maupun pada untai tertinggal akan mengalami elongasi dengan bantuan holoenzim DNA polimerase III. Kompleks multisubunit ini merupakan dimer, separuh akan bekerja pada untai pengarah dan separuh lainnya bekerja pada untai tertinggal. Dengan demikian, sintesis pada kedua untai akan berjalan dengan kecepatan yang sama.

Masing-masing bagian dimer pada kedua untai tersebut terdiri atas subunit a, yang mempunyai fungsi polimerase sesungguhnya, dan subunit e, yang mempunyai fungsi penyuntingan berupa eksonuklease 3’® 5’. Selain itu, terdapat subunit b yang menempelkan polimerase pada DNA.

Begitu primer pada untai tertinggal dielongasi oleh DNA polimerase III, mereka akan segera dibuang dan celah yang ditimbulkan oleh hilangnya primer tersebut diisi oleh DNA polimerase I, yang mempunyai aktivitas polimerase 5’® 3’, eksonuklease 5’ ® 3’, dan eksonuklease penyuntingan 3’ ® 5’. Eksonuklease 5’ ® 3’ membuang primer, sedangkan polimerase akan mengisi celah yang ditimbulkan. Akhirnya, fragmen-fragmen Okazaki akan dipersatukan oleh enzim DNA ligase. Secara in vivo, dimer holoenzim DNA polimerase III dan primosom diyakini membentuk kompleks berukuran besar yang disebut dengan replisom. Dengan adanya replisom sintesis DNA akan berlangsung dengan kecepatan 900 pb tiap detik.

Kedua garpu replikasi akan bertemu kira-kira pada posisi 180°C dari ori. Di sekitar daerah ini terdapat sejumlah terminator yang akan menghentikan gerakan garpu replikasi. Terminator tersebut antara lain berupa produk gen tus, suatu inhibitor bagi helikase DnaB. Ketika replikasi selesai, kedua lingkaran hasil replikasi masih menyatu. Pemisahan dilakukan oleh enzim topoisomerase IV. Masing-masing lingkaran hasil replikasi kemudian disegregasikan ke dalam kedua sel hasil pembelahan.

Replikasi DNA eukariot

Pada eukariot replikasi DNA hanya terjadi pada fase S di dalam interfase. Untuk memasuki fase S diperlukan regulasi oleh sistem protein kompleks yang disebut siklin dan kinase tergantung siklin atau cyclin-dependent protein kinases (CDKs), yang berturut-turut akan diaktivasi oleh sinyal pertumbuhan yang mencapai permukaan sel. Beberapa CDKs akan melakukan fosforilasi dan mengaktifkan protein-protein yang diperlukan untuk inisiasi pada masing-masing ori.

Berhubung dengan kompleksitas struktur kromatin, garpu replikasi pada eukariot bergerak hanya dengan kecepatan 50 pb tiap detik. Sebelum melakukan penyalinan, DNA harus dilepaskan dari nukleosom pada garpu replikasi sehingga gerakan garpu replikasi akan diperlambat menjadi sekitar 50 pb tiap detik. Dengan kecepatan seperti ini diperlukan waktu sekitar 30 hari untuk menyalin molekul DNA kromosom pada kebanyakan mamalia.
Sederetan sekuens tandem yang terdiri atas 20 hingga 50 replikon mengalami inisiasi secara serempak pada waktu tertentu selama fase S. Deretan yang mengalami inisasi paling awal adalah eukomatin, sedangkan deretan yang agak lambat adalah heterokromatin. DNA sentromir dan telomir bereplikasi paling lambat. Pola semacam ini mencerminkan aksesibilitas struktur kromatin yang berbeda-beda terhadap faktor inisiasi.
Seperti halnya pada prokariot, satu atau beberapa DNA helikase dan Ssb yang disebut dengan protein replikasi A atau replication protein A (RP-A) diperlukan untuk memisahkan kedua untai DNA. Selanjutnya, tiga DNA polimerase yang berbeda terlibat dalam elongasi. Untai pengarah dan masing-masing fragmen untai tertinggal diinisiasi oleh RNA primer dengan bantuan aktivitas primase yang merupakan bagian integral enzim DNA polimerase a. Enzim ini akan meneruskan elongasi replikasi tetapi kemudian segera digantikan oleh DNA polimerase d pada untai pengarah dan DNA polimerase e pada untai tertinggal. Baik DNA polimerase d maupun e mempunyai fungsi penyuntingan. Kemampuan DNA polimerase d untuk menyintesis DNA yang panjang disebabkan oleh adanya antigen perbanyakan nuklear sel atau proliferating cell nuclear antigen (PCNA), yang fungsinya setara dengan subunit b holoenzim DNA polimerase III pada E. coli. Selain terjadi penggandaan DNA, kandungan histon di dalam sel juga mengalami penggandaan selama fase S.

Mesin replikasi yang terdiri atas semua enzim dan DNA yang berkaitan dengan garpu replikasi akan diimobilisasi di dalam matriks nuklear. Mesin-mesin tersebut dapat divisualisasikan menggunakan mikroskop dengan melabeli DNA yang sedang bereplikasi. Pelabelan dilakukan menggunakan analog timidin, yaitu bromodeoksiuridin (BUdR), dan visualisasi DNA yang dilabeli tersebut dilakukan dengan imunofloresensi menggunakan antibodi yang mengenali BUdR.

Ujung kromosom linier tidak dapat direplikasi sepenuhnya karena tidak ada DNA yang dapat menggantikan RNA primer yang dibuang dari ujung 5’ untai tertinggal. Dengan demikian, informasi genetik dapat hilang dari DNA. Untuk mengatasi hal ini, ujung kromosom eukariot (telomir) mengandung beratus-ratus sekuens repetitif sederhana yang tidak berisi informasi genetik dengan ujung 3’ melampaui ujung 5’. Enzim telomerase mengandung molekul RNA pendek, yang sebagian sekuensnya komplementer dengan sekuens repetitif tersebut. RNA ini akan bertindak sebagai cetakan (templat) bagi penambahan sekuens repetitif pada ujung 3’.

Hal yang menarik adalah bahwa aktivitas telomerase mengalami penekanan di dalam sel-sel somatis pada organisme multiseluler, yang lambat laun akan menyebabkan pemendekan kromosom pada tiap generasi sel. Ketika pemendekan mencapai DNA yang membawa informasi genetik, sel-sel akan menjadi layu dan mati. Fenomena ini diduga sangat penting di dalam proses penuaan sel. Selain itu, kemampuan penggandaan yang tidak terkendali pada kebanyakan sel kanker juga berkaitan dengan reaktivasi enzim telomerase.

ASAM NUKLEAT

Struktur Molekul

Asam nukleat merupakan salah satu makromolekul yang memegang peranan sangat penting dalam kehidupan organisme karena di dalamnya tersimpan informasi genetik. Asam nukleat sering dinamakan juga polinukleotida karena tersusun dari sejumlah molekul nukleotida sebagai monomernya. Tiap nukleotida mempunyai struktur yang terdiri atas gugus fosfat, gula pentosa, dan basa nitrogen atau basa nukleotida (basa N).

Ada dua macam asam nukleat, yaitu asam deoksiribonukleat atau deoxyribonucleic acid (DNA) dan asam ribonukleat atau ribonucleic acid (RNA). Dilihat dari strukturnya, perbedaan di antara kedua macam asam nukleat ini terutama terletak pada komponen gula pentosanya. Pada RNA gula pentosanya adalah ribosa, sedangkan pada DNA gula pentosanya mengalami kehilangan satu atom O pada posisi C nomor 2’ sehingga dinamakan gula 2’-deoksiribosa.

Perbedaan struktur lainnya antara DNA dan RNA adalah pada basa N-nya. Basa N, baik pada DNA maupun pada RNA, mempunyai struktur berupa cincin aromatik heterosiklik (mengandung C dan N) dan dapat dikelompokkan menjadi dua golongan, yaitu purin dan pirimidin. Basa purin mempunyai dua buah cincin (bisiklik), sedangkan basa pirimidin hanya mempunyai satu cincin (monosiklik). Pada DNA, dan juga RNA, purin terdiri atas adenin (A) dan guanin (G). Akan tetapi, untuk pirimidin ada perbedaan antara DNA dan RNA. Kalau pada DNA basa pirimidin terdiri atas sitosin (C) dan timin (T), pada RNA tidak ada timin dan sebagai gantinya terdapat urasil (U). Timin berbeda dengan urasil hanya karena adanya gugus metil pada posisi nomor 5 sehingga timin dapat juga dikatakan sebagai 5-metilurasil.

Nukleosida dan nukleotida

Penomoran posisi atom C pada cincin gula dilakukan menggunakan tanda aksen (1’, 2’, dan seterusnya), sekedar untuk membedakannya dengan penomoran posisi pada cincin basa. Posisi 1’ pada gula akan berikatan dengan posisi 9 (N-9) pada basa purin atau posisi 1 (N-1) pada basa pirimidin melalui ikatan glikosidik atau glikosilik (Gambar 2.2). Kompleks gula-basa ini dinamakan nukleosida.

Di atas telah disinggung bahwa asam nukleat tersusun dari monomer-monomer berupa nukleotida, yang masing-masing terdiri atas sebuah gugus fosfat, sebuah gula pentosa, dan sebuah basa N. Dengan demikian, setiap nukleotida pada asam nukleat dapat dilihat sebagai nukleosida monofosfat. Namun, pengertian nukleotida secara umum sebenarnya adalah nukleosida dengan sebuah atau lebih gugus fosfat. Sebagai contoh, molekul ATP (adenosin trifosfat) adalah nukleotida yang merupakan nukleosida dengan tiga gugus fosfat.

Jika gula pentosanya adalah ribosa seperti halnya pada RNA, maka nukleosidanya dapat berupa adenosin, guanosin, sitidin, dan uridin. Begitu pula, nukleotidanya akan ada empat macam, yaitu adenosin monofosfat, guanosin monofosfat, sitidin monofosfat, dan uridin monofosfat. Sementara itu, jika gula pentosanya adalah deoksiribosa seperti halnya pada DNA, maka (2’-deoksiribo)nukleosidanya terdiri atas deoksiadenosin, deoksiguanosin, deoksisitidin, dan deoksitimidin.

Ikatan fosfodiester

Selain ikatan glikosidik yang menghubungkan gula pentosa dengan basa N, pada asam nukleat terdapat pula ikatan kovalen melalui gugus fosfat yang menghubungkan antara gugus hidroksil (OH) pada posisi 5’ gula pentosa dan gugus hidroksil pada posisi 3’ gula pentosa nukleotida berikutnya. Ikatan ini dinamakan ikatan fosfodiester karena secara kimia gugus fosfat berada dalam bentuk diester

Ikatan fosfodiester

Selain ikatan glikosidik yang menghubungkan gula pentosa dengan basa N, pada asam nukleat terdapat pula ikatan kovalen melalui gugus fosfat yang menghubungkan antara gugus hidroksil (OH) pada posisi 5’ gula pentosa dan gugus hidroksil pada posisi 3’ gula pentosa nukleotida berikutnya. Ikatan ini dinamakan ikatan fosfodiester karena secara kimia gugus fosfat berada dalam bentuk diester

Oleh karena ikatan fosfodiester menghubungkan gula pada suatu nukleotida dengan gula pada nukleotida berikutnya, maka ikatan ini sekaligus menghubungkan kedua nukleotida yang berurutan tersebut. Dengan demikian, akan terbentuk suatu rantai polinukleotida yang masing-masing nukleotidanya satu sama lain dihubungkan oleh ikatan fosfodiester.

Kecuali yang berbentuk sirkuler, seperti halnya pada kromosom dan plasmid bakteri, rantai polinukleotida memiliki dua ujung. Salah satu ujungnya berupa gugus fosfat yang terikat pada posisi 5’ gula pentosa. Oleh karena itu, ujung ini dinamakan ujung P atau ujung 5’. Ujung yang lainnya berupa gugus hidroksil yang terikat pada posisi 3’ gula pentosa sehingga ujung ini dinamakan ujung OH atau ujung 3’. Adanya ujung-ujung tersebut menjadikan rantai polinukleotida linier mempunyai arah tertentu.

Pada pH netral adanya gugus fosfat akan menyebabkan asam nukleat bermuatan negatif. Inilah alasan pemberian nama ’asam’ kepada molekul polinukleotida meskipun di dalamnya juga terdapat banyak basa N. Kenyataannya, asam nukleat memang merupakan anion asam kuat atau merupakan polimer yang sangat bermuatan negatif.

Sekuens asam nukleat

Telah dikatakan di atas bahwa urutan basa N akan menentukan spesifisitas suatu molekul asam nukleat sehingga biasanya kita menggambarkan suatu molekul asam nukleat cukup dengan menuliskan urutan basa (sekuens)-nya saja. Selanjutnya, dalam penulisan sekuens asam nukleat ada kebiasaan untuk menempatkan ujung 5’ di sebelah kiri atau ujung 3’ di sebelah kanan. Sebagai contoh, suatu sekuens DNA dapat dituliskan 5’-ATGACCTGAAAC-3’ atau suatu sekuens RNA dituliskan 5’-GGUCUGAAUG-3’.

Jadi, spesifisitas suatu asam nukleat selain ditentukan oleh sekuens basanya, juga harus dilihat dari arah pembacaannya. Dua asam nukleat yang memiliki sekuens sama tidak berarti keduanya sama jika pembacaan sekuens tersebut dilakukan dari arah yang berlawanan (yang satu 5’→ 3’, sedangkan yang lain 3’→ 5’).

Struktur tangga berpilin (double helix) DNA

Dua orang ilmuwan, J.D.Watson dan F.H.C.Crick, mengajukan model struktur molekul DNA yang hingga kini sangat diyakini kebenarannya dan dijadikan dasar dalam berbagai teknik yang berkaitan dengan manipulasi DNA. Model tersebut dikenal sebagai tangga berplilin (double helix). Secara alami DNA pada umumnya mempunyai struktur molekul tangga berpilin ini.

Model tangga berpilin menggambarkan struktur molekul DNA sebagai dua rantai polinukleotida yang saling memilin membentuk spiral dengan arah pilinan ke kanan. Fosfat dan gula pada masing-masing rantai menghadap ke arah luar sumbu pilinan, sedangkan basa N menghadap ke arah dalam sumbu pilinan dengan susunan yang sangat khas sebagai pasangan – pasangan basa antara kedua rantai. Dalam hal ini, basa A pada satu rantai akan berpasangan dengan basa T pada rantai lainnya, sedangkan basa G berpasangan dengan basa C. Pasangan-pasangan basa ini dihubungkan oleh ikatan hidrogen yang lemah (nonkovalen). Basa A dan T dihubungkan oleh ikatan hidrogen rangkap dua, sedangkan basa G dan C dihubungkan oleh ikatan hidrogen rangkap tiga. Adanya ikatan hidrogen tersebut menjadikan kedua rantai polinukleotida terikat satu sama lain dan saling komplementer. Artinya, begitu sekuens basa pada salah satu rantai diketahui, maka sekuens pada rantai yang lainnya dapat ditentukan.

Oleh karena basa bisiklik selalu berpasangan dengan basa monosiklik, maka jarak antara kedua rantai polinukleotida di sepanjang molekul DNA akan selalu tetap. Dengan perkataan lain, kedua rantai tersebut sejajar. Akan tetapi, jika rantai yang satu dibaca dari arah 5’ ke 3’, maka rantai pasangannya dibaca dari arah 3’ ke 5’. Jadi, kedua rantai tersebut sejajar tetapi berlawanan arah (antiparalel).

Modifikasi struktur molekul RNA

Tidak seperti DNA, molekul RNA pada umumnya berupa untai tunggal sehingga tidak memiliki struktur tangga berpilin. Namun, modifikasi struktur juga terjadi akibat terbentuknya ikatan hidrogen di dalam untai tunggal itu sendiri (intramolekuler).

Dengan adanya modifikasi struktur molekul RNA, kita mengenal tiga macam RNA, yaitu RNA duta atau messenger RNA (mRNA), RNA pemindah atau transfer RNA (tRNA), dan RNA ribosomal (rRNA). Struktur mRNA dikatakan sebagai struktur primer, sedangkan struktur tRNA dan rRNA dikatakan sebagai struktur sekunder. Perbedaan di antara ketiga struktur molekul RNA tersebut berkaitan dengan perbedaan fungsinya masing-masing.

Sifat-sifat Fisika-Kimia Asam Nukleat

Di bawah ini akan dibicarakan sekilas beberapa sifat fisika-kimia asam nukleat. Sifat-sifat tersebut adalah stabilitas asam nukleat, pengaruh asam, pengaruh alkali, denaturasi kimia, viskositas, dan kerapatan apung.

Stabilitas asam nukleat

Ketika kita melihat struktur tangga berpilin molekul DNA atau pun struktur sekunder RNA, sepintas akan nampak bahwa struktur tersebut menjadi stabil akibat adanya ikatan hidrogen di antara basa-basa yang berpasangan. Padahal, sebenarnya tidaklah demikian. Ikatan hidrogen di antara pasangan-pasangan basa hanya akan sama kuatnya dengan ikatan hidrogen antara basa dan molekul air apabila DNA berada dalam bentuk rantai tunggal. Jadi, ikatan hidrogen jelas tidak berpengaruh terhadap stabilitas struktur asam nukleat, tetapi sekedar menentukan spesifitas perpasangan basa.

Penentu stabilitas struktur asam nukleat terletak pada interaksi penempatan (stacking interactions) antara pasangan-pasangan basa. Permukaan basa yang bersifat hidrofobik menyebabkan molekul-molekul air dikeluarkan dari sela-sela perpasangan basa sehingga perpasangan tersebut menjadi kuat.

Pengaruh asam

Di dalam asam pekat dan suhu tinggi, misalnya HClO4 dengan suhu lebih dari 100ºC, asam nukleat akan mengalami hidrolisis sempurna menjadi komponen-komponennya. Namun, di dalam asam mineral yang lebih encer, hanya ikatan glikosidik antara gula dan basa purin saja yang putus sehingga asam nukleat dikatakan bersifat apurinik.

Pengaruh alkali

Pengaruh alkali terhadap asam nukleat mengakibatkan terjadinya perubahan status tautomerik basa. Sebagai contoh, peningkatan pH akan menyebabkan perubahan struktur guanin dari bentuk keto menjadi bentuk enolat karena molekul tersebut kehilangan sebuah proton. Selanjutnya, perubahan ini akan menyebabkan terputusnya sejumlah ikatan hidrogen sehingga pada akhirnya rantai ganda DNA mengalami denaturasi. Hal yang sama terjadi pula pada RNA. Bahkan pada pH netral sekalipun, RNA jauh lebih rentan terhadap hidrolisis bila dibadingkan dengan DNA karena adanya gugus OH pada atom C nomor 2 di dalam gula ribosanya.

Denaturasi kimia

Sejumlah bahan kimia diketahui dapat menyebabkan denaturasi asam nukleat pada pH netral. Contoh yang paling dikenal adalah urea (CO(NH2)2) dan formamid (COHNH2). Pada konsentrasi yang relatif tinggi, senyawa-senyawa tersebut dapat merusak ikatan hidrogen. Artinya, stabilitas struktur sekunder asam nukleat menjadi berkurang dan rantai ganda mengalami denaturasi.

Viskositas

DNA kromosom dikatakan mempunyai nisbah aksial yang sangat tinggi karena diameternya hanya sekitar 2 nm, tetapi panjangnya dapat mencapai beberapa sentimeter. Dengan demikian, DNA tersebut berbentuk tipis memanjang. Selain itu, DNA merupakan molekul yang relatif kaku sehingga larutan DNA akan mempunyai viskositas yang tinggi. Karena sifatnya itulah molekul DNA menjadi sangat rentan terhadap fragmentasi fisik. Hal ini menimbulkan masalah tersendiri ketika kita hendak melakukan isolasi DNA yang utuh.

Kerapatan apung

Analisis dan pemurnian DNA dapat dilakukan sesuai dengan kerapatan apung (bouyant density)-nya. Di dalam larutan yang mengandung garam pekat dengan berat molekul tinggi, misalnya sesium klorid (CsCl) 8M, DNA mempunyai kerapatan yang sama dengan larutan tersebut, yakni sekitar 1,7 g/cm3. Jika larutan ini disentrifugasi dengan kecepatan yang sangat tinggi, maka garam CsCl yang pekat akan bermigrasi ke dasar tabung dengan membentuk gradien kerapatan. Begitu juga, sampel DNA akan bermigrasi menuju posisi gradien yang sesuai dengan kerapatannya. Teknik ini dikenal sebagai sentrifugasi seimbang dalam tingkat kerapatan (equilibrium density gradient centrifugation) atau sentrifugasi isopiknik.

Oleh karena dengan teknik sentrifugasi tersebut pelet RNA akan berada di dasar tabung dan protein akan mengapung, maka DNA dapat dimurnikan baik dari RNA maupun dari protein. Selain itu, teknik tersebut juga berguna untuk keperluan analisis DNA karena kerapatan apung DNA (ρ) merupakan fungsi linier bagi kandungan GC-nya. Dalam hal ini, ρ = 1,66 + 0,098% (G + C).

Sifat-sifat Spektroskopik-Termal Asam Nukleat

Sifat spektroskopik-termal asam nukleat meliputi kemampuan absorpsi sinar UV, hipokromisitas, penghitungan konsentrasi asam nukleat, penentuan kemurnian DNA, serta denaturasi termal dan renaturasi asam nukleat. Masing-masing akan dibicarakan sekilas berikut ini.

Absorpsi UV

Asam nukleat dapat mengabsorpsi sinar UV karena adanya basa nitrogen yang bersifat aromatik; fosfat dan gula tidak memberikan kontribusi dalam absorpsi UV. Panjang gelombang untuk absorpsi maksimum baik oleh DNA maupun RNA adalah 260 nm atau dikatakan λmaks = 260 nm. Nilai ini jelas sangat berbeda dengan nilai untuk protein yang mempunyai λmaks = 280 nm. Sifat-sifat absorpsi asam nukleat dapat digunakan untuk deteksi, kuantifikasi, dan perkiraan kemurniannya.

Hipokromisitas

Meskipun λmaks untuk DNA dan RNA konstan, ternyata ada perbedaan nilai yang bergantung kepada lingkungan di sekitar basa berada. Dalam hal ini, absorbansi pada λ 260 nm (A260) memperlihatkan variasi di antara basa-basa pada kondisi yang berbeda. Nilai tertinggi terlihat pada nukleotida yang diisolasi, nilai sedang diperoleh pada molekul DNA rantai tunggal (ssDNA) atau RNA, dan nilai terendah dijumpai pada DNA rantai ganda (dsDNA). Efek ini disebabkan oleh pengikatan basa di dalam lingkungan hidrofobik. Istilah klasik untuk menyatakan perbedaan nilai absorbansi tersebut adalah hipokromisitas. Molekul dsDNA dikatakan relatif hipokromik (kurang berwarna) bila dibandingkan dengan ssDNA. Sebaliknya, ssDNA dikatakan hiperkromik terhadap dsDNA.

Penghitungan konsentrasi asam nukleat

Konsentrasi DNA dihitung atas dasar nilai A260-nya. Molekul dsDNA dengan konsentrasi 1mg/ml mempunyai A260 sebesar 20, sedangkan konsentrasi yang sama untuk molekul ssDNA atau RNA mempunyai A260 lebih kurang sebesar 25. Nilai A260 untuk ssDNA dan RNA hanya merupakan perkiraan karena kandungan basa purin dan pirimidin pada kedua molekul tersebut tidak selalu sama, dan nilai A260 purin tidak sama dengan nilai A260 pirimidin. Pada dsDNA, yang selalu mempunyai kandungan purin dan pirimidin sama, nilai A260 -nya sudah pasti.

Kemurnian asam nukleat

Tingkat kemurnian asam nukleat dapat diestimasi melalui penentuan nisbah A260 terhadap A280. Molekul dsDNA murni mempunyai nisbah A260 /A280 sebesar 1,8. Sementara itu, RNA murni mempunyai nisbah A260 /A280 sekitar 2,0. Protein, dengan λmaks = 280 nm, tentu saja mempunyai nisbah A260 /A280 kurang dari 1,0. Oleh karena itu, suatu sampel DNA yang memperlihatkan nilai A260 /A280 lebih dari 1,8 dikatakan terkontaminasi oleh RNA. Sebaliknya, suatu sampel DNA yang memperlihatkan nilai A260 /A280 kurang dari 1,8 dikatakan terkontaminasi oleh protein.

Denaturasi termal dan renaturasi

Di atas telah disinggung bahwa beberapa senyawa kimia tertentu dapat menyebabkan terjadinya denaturasi asam nukleat. Ternyata, panas juga dapat menyebabkan denaturasi asam nukleat. Proses denaturasi ini dapat diikuti melalui pengamatan nilai absorbansi yang meningkat karena molekul rantai ganda (pada dsDNA dan sebagian daerah pada RNA) akan berubah menjadi molekul rantai tunggal.

Denaturasi termal pada DNA dan RNA ternyata sangat berbeda. Pada RNA denaturasi berlangsung perlahan dan bersifat acak karena bagian rantai ganda yang pendek akan terdenaturasi lebih dahulu daripada bagian rantai ganda yang panjang. Tidaklah demikian halnya pada DNA. Denaturasi terjadi sangat cepat dan bersifat koperatif karena denaturasi pada kedua ujung molekul dan pada daerah kaya AT akan mendestabilisasi daerah-daerah di sekitarnya.

Suhu ketika molekul asam nukleat mulai mengalami denaturasi dinamakan titik leleh atau melting temperature (Tm). Nilai Tm merupakan fungsi kandungan GC sampel DNA, dan berkisar dari 80 ºC hingga 100ºC untuk molekul-molekul DNA yang panjang.

DNA yang mengalami denaturasi termal dapat dipulihkan (direnaturasi) dengan cara didinginkan. Laju pendinginan berpengaruh terhadap hasil renaturasi yang diperoleh. Pendinginan yang berlangsung cepat hanya memungkinkan renaturasi pada beberapa bagian/daerah tertentu. Sebaliknya, pendinginan yang dilakukan perlahan-lahan dapat mengembalikan seluruh molekul DNA ke bentuk rantai ganda seperti semula. Renaturasi yang terjadi antara daerah komplementer dari dua rantai asam nukleat yang berbeda dinamakan hibridisasi.

Superkoiling DNA

Banyak molekul dsDNA berada dalam bentuk sirkuler tertutup atau closed-circular (CC), misalnya DNA plasmid dan kromosom bakteri serta DNA berbagai virus. Artinya, kedua rantai membentuk lingkaran dan satu sama lain dihubungkan sesuai dengan banyaknya putaran heliks (Lk) di dalam molekul DNA tersebut.

Sejumlah sifat muncul dari kondisi sirkuler DNA. Cara yang baik untuk membayangkannya adalah menganggap struktur tangga berpilin DNA seperti gelang karet dengan suatu garis yang ditarik di sepanjang gelang tersebut. Jika kita membayangkan suatu pilinan pada gelang, maka deformasi yang terbentuk akan terkunci ke dalam sistem pilinan tersebut. Deformasi inilah yang disebut sebagai superkoiling.

Interkalator

Geometri suatu molekul yang mengalami superkoiling dapat berubah akibat beberapa faktor yang mempengaruhi pilinan internalnya. Sebagai contoh, peningkatan suhu dapat menurunkan jumlah pilinan, atau sebaliknya, peningkatan kekuatan ionik dapat menambah jumlah pilinan. Salah satu faktor yang penting adalah keberadaan interkalator seperti etidium bromid (EtBr). Molekul ini merupakan senyawa aromatik polisiklik bermuatan positif yang menyisip di antara pasangan-pasangan basa. Dengan adanya EtBr molekul DNA dapat divisualisasikan menggunakan paparan sinar UV.